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The BRS identities for the general axial gauge in quantum 
gravity 

D M Cappert and A MacLean 
Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, UK 

Received 1 March 1982 

Abstract. We derive the BRS identities for quantum gravity in the axial gauge and use 
them to explain why the one-loop counterterm is not generally covariant. 

1. Introduction 

Recent investigations have clarified the invariance properties of the Yang-Mills theory 
in a general axial gauge. To review the situation briefly we consider a Lagrangian of 
the form$ 

The case a = 0 corresponds to the axial gauge whereas the a = 1 case is known as the 
planar gauge (Dokshitzer et a1 1980). Such a Lagrangian gives rise to ghosts, but 
within the context of dimensional regularisation it can be shown that closed loops of 
ghosts are zero and hence do not contribute to the S matrix. It might be thought that 
this implies that Green functions satisfy the classical Ward identities and hence that 
the counterterm is of the form (FZY)*, even for a # 0. In fact two somewhat different 
approaches have been used to show that this is not correct. Capper and Leibbrandt 
(1981a, b) show that, due to the nonlinearity of the gauge transformation, the Ward 
identities are complicated by the occurrence of the so-called ‘pincer diagrams’, even 
though ghosts are absent. Andragi and Taylor (1981) and Fadin and Milstein (1981) 
on the other hand, show that although the ghosts decouple from the S matrix they 
do not decouple from the BRS identities (Becchi et a1 1975). Even though entirely 
different diagrams are involved in the evaluation of the counterterms, both approaches 
are in complete agreement for general a. It is well known, of course, that in the axial 
gauge (a = 0) the counterterm is of the form (F:,,)’. This is because the ghosts 
decouple from both the S matrix and the BRS identities on the imposition of the 
n,AE = 0 gauge condition. Hence the argument that closed loops of ghosts are zero 
due to dimensional regularisation is superfluous in this particular case. 

t Nuffield Foundation Science Research Fellow. 
$We use a + --- metric and dimensionally regularise all integrals in a 2w-dimensional space-time. S,, 
denotes our flat-space metric ‘tensor’. 
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The axial gauge can also be used in quantum gravity by employing a Lagrangian 
of the form 

where R is the Ricci scalar and the graviton field, 4,,, is defined in terms of the 
metric tensor by 

(1.3) 

Again the axial gauge is given by the limit a + 0. Unfortunately, examination of the 
Ward identities (Capper and Leibbrandt 1981c) shows that, even in this limit- the 
counterterms in quantum gravity are not generally covariant objects (such as J-gR', 
etc). Not only do the counterterms depend on the parameter n, (as also shown by 
Delbourgo 1981), but an explicit calculation shows that the graviton self-energy is 
non-transverse. These difficulties are due to the non-vanishing of the contribution to 
the Ward idelltities from the pincer diagram (figure 1) in the a + 0 limit. This contrasts 
with the Yang-Mills case where the pincer diagram decouples in the a + 0 limit. In 
the present paper we want to complete the study of the axial gauge in quantum gravity 
by carrying out an analysis analogous to that done by AndraSi and Taylor (1981) 
for the Yang-Mills Lagrangian; that is we wish to examine the BRS rather than Ward 
identities. Again it turns out that completely different diagrams need to be calculated 
but the results are entirely compatible. 

g,, = a,, + WPY. 

Figure 1. The pincer diagram which occurs in the Ward identities of Capper and Leibbrandt 
(1981~). The full curves and line represent gravitons. 

2. Derivation of the BRS identities 

Using the parametrisation of equation (1.3), the Einstein action is invariant under the 
gauge transformation 

= A p v A &  (2.1) 

(2.2) 

where 

AFvA = K - ' ( S , d ,  +aFAa,)+(4,,a, +4Awav +a,d,,) 

and ( x )  is an arbitrary gauge parameter. The ghost Lagrangian 2 G  is given by 

TG = evn,A,,ACA (2.3) 

CA and c,, being anticommuting complex vector ghost fields. As can be seen, the 
ghosts do not decouple in 2 '~  even for nw4,u = 0. This is in sharp contrast to the 
analogous Yang-Mills case. For non-zero a, the complete Lagrangian is given by 

3 = 2 E + z G  (2.4) 
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and 9 is invariant under the BRS transformations 

sc, = C, Aa,C, (2.7) 

9, = J,R,, + j , C ,  + C,J, + I,A,vpC'p + I,C,a,c, (2.8) 

Z[J,,, j,, J,, I,,, I,] = J d [ U  d[C,I d[CuI exp i J dx @'+=%I. (2.9) 

where A is a constant anticommuting parameter. We can introduce sources via 

and define the generating functional for Green functions, 2, by 

As usual we define W[J,,, f,, J,, I,,, I , ]  by 

Z = e x p i W  (2.10) 

and r, the generating functional for proper vertices, via 

W[J,,, J,, J,, I,,, I , ]  = 1 dx (J,R,, +j,C, + c,J,) + r[d,,, E,, C, ; I,,, I , ] .  (2.1 1) 

Invariance under the transformations of equations (2.5)-(2.7) then leads to the identity 

sr sr sr sr 1 sr + - -+- npdpr -) = 0. 
J d x ( - = z  sc, SI, cy sc, (2.12) 

Equation (2.12) contains all the BRS identities. Operating with SZ/Sq5,(x)SCA (y)  we 
obtaint 

In the tree approximation, equation (2.13) can be represented diagrammatically as 
shown in figure 2 and can be verified directly by using the Feynman rules given in 
table 1. The verification of equation (2.13) to one loop is carried out in the next section. 

Figure 2. The BRS identity in the tree approximation. The broken lines represent ghosts 
and the double lines the I,, current. The arrows on the broken lines represent directed 
ghosts and do not correspond to the momenta directions. 

3. The verification of the BRS identity in the one-loop approximation 

To one loop, equation (2.13) may be portrayed diagrammatically as shown in figure 3 
and to verify the equation to this order we need to evaluate the diagrams defined in 
figures 4 and 5 .  The pole part of the graviton self-energy, RW,,,, has already been 

t We use the standard notation for symmetrised indices 

A(,BB,=$(A,B, +A,&). 
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Table 1. Feynman rules for the propagators and vertices. 

Functional Diagrammatic 
representation representation Momentum space expression 

Graviton propagator 

G ~ 8 . w  = ~ 

-1 
2i(2rr)4p2 

Ghost propagator 

I,, - C, vertex 

Figure 3. The BRS identity in the one-loop approximation. 

- 
2 l e v  P O  

Figure 4. The one-loop gravition self-energy Ilw,,v[p). 
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P-+ P-  

P V  A 
- * - -  - - * - -  

Figure 5. The diagram defining WW,,,* (p)  in the one-loop approximation. 

worked out by Capper and Leibbrandt (1981~) and the evaluation of W,u,A, which 
corresponds to figure 5 ,  is carried out in a similar manner. As before, it is easier to 
contract W,,, with momenta or a Kronecker delta before evaluation. We thus obtain 
(for the pole parts)? 

8 
fil =p, f iua , ,  = i (P2)2Y (Y - W2f 

fiz =puppp,f ius , ,  = -i ( P 2 I 3 Y  (Y - 1) K I 

@ 9 = P u W u p , p  =z (P2)2Y(Y - 1)K2f 

(3.1) 

(3.2) 

(3.3) 

8 2 2 -  

16 

where 

and 
y = ( p  ' n ) 2 / p 2 n 2  

f = divergent part of 

(3.4) 

(3.5) 

The other seven independent scalars that can be formed out of fi,u,A are all zero. 
The equation shown diagrammatically in figure 3 thus reduces to the two equations 

(3.6) 

(3.7) 

R3 = f l i P P , A l r ~ A ~ ,  = -i(p2W1 - W2) 

and - -  
II~ = ~ I p a , p , n o p ,  = $p * n (W1- f i g ) .  

Use of the results for n3 and R7 given by Capper and Leibbrandt (1981~)  together 
with those given above for fil, W2 and f i g  verifies equations (3.6) and (3.7). We 
note that all the amplitudes n3, &, fil, fi2 and f i g  are independent of a, in spite 
of the calculations being carried out for the general gauge breaking term in equation 
(1.2). Furthermore, it is precisely the non-vanishing of f I 3  and fi7 which leads to the 
non-transversality of the pole part of the graviton self-energy in the axial gauge, and 
thus the inadmissibility of generally covariant counterterms in this gauge. 

4. The ghost equation of motion 

It is also straightforward to derive the ghost equation of motion for the general axial 
gauge defined by equation (1.2) and it may be written as 

(4.1) 

t The Wi given in equations (3.1)-(3.3) were calculated by computer using exactly the same set of integrals 
as in Capper and Leibbrandt (1981~). The bar superscript on the Wi and lTi indicates that only the pole 
parts are considered. 
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which leads to the identity 

s *r -- s2r 
n,-- 

SC,SI,, SC,SC”,‘ (4.2) 

The tree graph approximation to equation (4.2) is shown in figure 6 and may readily 
be verified by using the Feynman rules of table 1. The one-loop approximation is 
shown in figure 7. Explicit calculation shows that all contributions to figure 7 are in 
fact zero. 

P- - * - - - * -  3 -  P-+ 
n P [ - - + - -  - 

Figure 6. The ghost equation of motion in the tree approximation. 

flu a U 

Figure 7. The ghost equation of motion in the one-loop approximation. 

5. Conclusion 

We have derived the BRS identities for the general axial gauge in quantum gravity 
and verified one set in the one-loop approximation. Unlike in a covariant gauge 
(Delbourgo and Ramon-Medrano 1976) a new diagram (i.e. figure 5 )  has to be 
calculated in order to verify the BRS rather than Ward identities. 

The failure of the axial gauge to give rise to generally covariant counterterms in 
quantum gravity is, to say the least, highly inconvenient and it is worthwhile searching 
for some variation of the axial gauge that may overcome this difficulty. Studying the 
BRS rather than Ward identities is a useful way of tackling the problem since the first 
requirement is that the ghost fields decouple from the BRS identities. One possibility 
is to retain the form of the gauge breaking term given in equation (1.2) but to use a 
more general parametrisation of the graviton field by defining 

JWv = [ A I ~ J , ~  + A Z S , & ~ ~ I + K [ A ~ ~ J , ~ ~ ~ ~  + A 4 4 , d a P  + A s S w & a ~ 4 p p I .  

Unfortunately a detailed examination shows that there are no values of the parameters 
A i  such that the ghosts decouple. This confirms the conclusions of Capper and 
Leibbrandt (1981d). 
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